309 research outputs found

    Newly Discovered RR Lyrae Stars in the SDSSXPanXSTARRS1XCatalina Footprint

    Full text link
    We present the detection of 6,371 RR Lyrae (RRL) stars distributed across ~14,000 deg^2 of the sky from the combined data of the Sloan Digital Sky Survey (SDSS), the Panoramic Survey Telescope and Rapid Response System 1 (PS1), and the second photometric catalogue from the Catalina Survey (CSDR2), out of these, ~2,021 RRL stars (~572 RRab and 1,449 RRc) are new discoveries. The RRL stars have heliocentric distances in the 4--28 kpc distance range. RRL-like color cuts from the SDSS and variability cuts from the PS1 are used to cull our candidate list. We then use the CSDR2 multi-epoch data to refine our sample. Periods were measured using the Analysis of Variance technique while the classification process is performed with the Template Fitting Method in addition to the visual inspection of the light curves. A cross-match of our RRL star discoveries with previous published catalogs of RRL stars yield completeness levels of ~50% for both RRab and RRc stars, and an efficiency of ~99% and ~87% for RRab and RRc stars, respectively. We show that our method for selecting RRL stars allows us to recover halo structures. The full lists of all the RRL stars are made publicly available.Comment: 14 pages, 11 figures. Accepted 2014 March 30. Received 2014 March 12; in original form 2013 November 2

    The Pan-STARRS1 Photometric System

    Full text link
    The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination -30 deg to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper we present our determination of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The Pan-STARRS photometric system is fundamentally based on the HST Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS magnitude system, and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. Byproducts, including transformations to other photometric systems, galactic extinction, and stellar locus are also provided. We close with a discussion of remaining systematic errors.Comment: 39 pages, 9 figures, machine readable table of bandpasses, accepted for publication in Ap

    Results of Periodontal Therapy Related to Tooth Type

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142120/1/jper0270.pd

    Short Term Results of Three Modalities of Periodontal Treatment

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141914/1/jper0131.pd

    Observational Constraints on the Catastrophic Disruption Rate of Small Main Belt Asteroids

    Full text link
    We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year (HCL) as a function of the post-disruption increase in brightness (delta m) and subsequent brightness decay rate (tau). The confidence limits were calculated using the brightest unknown main belt asteroid (V = 18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1's catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event's photometric behavior in a small aperture centered on the catastrophic disruption event. Our simplistic catastrophic disruption model suggests that delta m = 20 mag and 0.01 mag d-1 < tau < 0.1 mag d-1 which would imply that H0 = 28 -- strongly inconsistent with H0,B2005 = 23.26 +/- 0.02 predicted by Bottke et al. (2005) using purely collisional models. We postulate that the solution to the discrepancy is that > 99% of main belt catastrophic disruptions in the size range to which this study was sensitive (100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V = 18.5.Comment: 61 Pages, 10 Figures, 3 Table
    corecore